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NATTONAL ADVISORY COMMITTEE FOR AFRONAUTICS

TECHNICAL NOTE NO, 1453

AN INVESTIGATTON OF ATRCRAFT HEATERS
XXIX — COMPARISON OF SEVERAL, METHODS OF CALCULATING
HEAT LOSSES FROM AIRFOIIS

By L. M. K. Boelter, L. M. Grossman,
R. C. Martinelli, and E. H, Morrin

SUMMARY

A critical compariscn and sumary is given of the varlous methods
proposed. to date for calculating the unit thermal conductance on the
outer surface of a heated wing involving both leminar and turbulent
boundary layers, and a new equation is suggested which should indicate
the effect of the pressure gradient on the laminar heat transfer to a
greater degree than do the expressions presented heretofore. For
purposes of comperison the different equations are applied to a Joukowskl'
profile for which the necessary data are accurately known and the results
are plotted graphically. The unit thermal conductances in the laminar
and turbulent reglmes computed by the different methods are found to be
in good agreement. A procedure whereby the equations for heat transfer
from alrfoil surfaces may be applied to a propeller shape 1s presented
by means of an illustrative example.

INTRODUCTION

In the design of heating systems for wings for the purpose of thermal
ice prevention a knowledge of the unit thermal conductances on the inner
and. outer surfaces of the wing is necessary. The internal conductance
has probably a somewhat greater effect on the value of the over-all heat
transfer but the value of the external conductance ie presumebly the
controlling factor in the case of the distribution of temperature along
the wing. The extermal conductance is a functlon of many varisbles
depending upon the form of the thermal and fluild bourdary layers existing
at the airfoil surface. This report will be concermed solely with methods
of calculating this latter unlit thermal conductance. Excellent summaries
of the general problems involved in the design of wing heating systems
ars given in references 1 to 6.
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Five general procedures— have been suggésted in the literature for

camputing the heat transfer into laminar boundary layers for incompressible

. Tlow along airfoll surfaces and four methods have been proposed for the
turbulent regime, These are dilscussed in turn. In conclusion a new
method, which is scmewhat more complex than those previously published, is
presented for the laminar regime and is intended to represent more nearly
the aercdynamic and thermal conditions along a wing section. All the

methods discussed itreat the laminar and turbulent boundary layers separately,

and to date no accurate nmeans of locating the transition point has been
evolved. Instead of an accurate specification of this point, current
practice favors the assumption that transition occurs at, or near, the
point of minimum pressure. This criterion is of course inapplicable for
the case of "laminar wings."

The methods of calculation described in this report are sach based
upon one of four general principles (or simple modifications thereof).
These are:

For the laminar regime:

(1) "Reynolds analogy" which states the equivalence of the

equations for momentum and heat transfer at Prandtl modulus equal to l

and in the absence of a pressure gradient.

(2) Pohlhausen's exact solutlon of the differential equations
for heat transfer in a laminar boundary layer along a flat plate for
any value of the Prandtl modulus. Also, Colburnts equation for heat
transfer along a flat plate based upon Pohlhausen's exact solutlon.

(3) The postulate that the temperature and velocity distributions
in the boundary layer are proportional, the factor of proportionality

being calculatsed by means of a heat balance on the boundary layer
(Squire?s method).

(4) An integral heat balance over the laminar boundary layer.
For the turbulent regime:

(1) Reynolds analogy

(2) Kdrmdn's modification of Reynolds analogy

(3) Colburn's equation for turbulent heat transfer along a
flat plate which is identical with the equations obtalned froa

Reynolds analogy, except that the effect of the variation in the
Pranditl modulus from unity 1s approximately accounted for

IThe paper presented by A. N, Tifford (A.S.M.E. Aviation Meeting,
Los Angelps, Jure 1944) was not reveived vefore this report was written.
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(4) An integral heat balance over the turbulent boundary layer

The methods .of analysis summarized in this report also illustrate
several approximate procedures for. indicating the effect of the
pressure gradient existing over an alrfoll surface upon the heat
transfer into the boundary layer. For purposes of comparison these
procedures may be listed under four main headings: i
(A) Substitution of the velocity near the ailrfoil surface

(calculated by means of the pressure dlstributions about
the airfoil; see appendix B) into flat—plate equations end
the substitution of approximate magnitudes of the local drag

coefficlient [‘baaed on (%;’_-) along the airfoil surface
¥=0

into heat—transfer equatlons derived from a consideration of

flow over a flat plate

(B) Substitution of the veloclty near the airfoll surface
(calculated by means of the pressure distribution about the
airfoll, see appendix B) into Colburn's empirical heat—
transfer equations for a flat plate

(C) Heat balence on the boundary layer, including the effect of
pressure gradient on the wveloclty distrlbution with the
further postulate that the temperature distribution is
proportional to the veloclty distribution

(D) Heat balance on the boundary layer solving the heat 'bransfer
and hydrodynemic equatlons simultaneously

With these classifications the methods descri'bed. herein may
be tabulated as follows:



LAMIRAR TURBULENT
Genere. B2 | .5l o
principlel B & Pohlhausen D o o lamladdp S 51,8
g4 flat-plate 22l eE |93 | B8ES |25 |8
g solution s | 843 E. \ﬁﬂc -3 mB
g o g oo g W E o o
7 g9 7| & wd|°F
Analy—~ | Colburn E g o
Method tical agquation
Allen and
Look A
Frick and A A
McCullough
Martinelll B B
and others :
Squire ¢ A c
This report b

The materlial in this repcrt ia divided into two sections; the first section describes the
methods for calculations in the laminar regime and the second section describes the methods for the

turbulent regime.

The authors wish to record here their appreciation of the advice and asaistance offered by
Mr, G. Young during the preparation of this report.

This work was conducted at the Unlversity of California under the sponsorship and with the
financial assistance of the National Advisory Cammittee for Aeronautica.
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SYMBOLS

ares of airfoll equal to chord times span, square feet

thermal diffusivity of fluid 8q £t sec

e y (36oocp ) (sq £t)/(sec)

drag coefflclent (FD = %Cprlleo2> .
1ift coefficilent (FL = %CLQAua?)

heat capacity of fluld at constant pressure, Btu/(1b)(°F)

wing chord, feet L : =

diameter of equivalent cylinder, feet .oI==

average unlt thermal convective conductance, for le:
between airfoll surface and alr, Btu/(hr)(sq £t)(°F)

local or polnt unit thermal convective conductance between air—
foll surface and ailr at any point x, Btu/(hr)(sq £t)(°F)

local or polnt unit thermal convective conductance between air—
foll surface and alr at any angle @, Btu/(hr)(sq £t)(°F)

drag force, pounds

1ift force, pounds

mechanicel equivalent of heat (778), (f£t-1lb)/Btu

thermal conductivity of fluid, Btu/(hr)(sq £t)(°F/ft)

Nusselt modulus ST
pressure, (1b)/(sq £t) _ R
heat transferred at emy point x, Btu/(hr)

ideal gas constant, (ft-1b)/(1b)(°R)

Reynolds modulus based on wing chord (u_:;,_c>

Reynolds modulus based on cylinder dlameter ( E{'j'i>

u
Reynolds modulus based on length x (.lx.
v
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temperature of fluid in boundary layer, °R
temperature of fluid at edge of bowundery layer, °R -
temperature of fluid in free stream, °R e
temperature of surface, °R

veloclty of fluild near alrfoil surface In x—dlrection calculated

from Bernoullits equation, = — % %%, (£t)/(sec)

dx
velocity of fluld in boundery layer in x—direction, (ft)/(sec)
velocity of fluld in free stream in x—direction, (ft)/(sec)

velocity of fluid in boundery layer in y-directionm, (ft)/(sec)

length along airfoil profile measured from point of stagnation,
feet

distance normal to &irfoll surface, feet
angle of attack of airfoil, degree

2
dimensionless parameter in Pohlhausen solution (%T-%g>

thickness of lasminar boundary layer, feet
thickness of thermal boundary layer, feet

displacement thlckness of hydrodynemic boundary layer

- 1) gy, feet
Le-3)

displecement thickness of thermal boundary layer

/T - T,
— 2 ) dy |, feet : -
o \To -

"characteristic length" in turbulent boundary layer, feet

angle between radius through point on cylinder and radlus
through point of stagnhation measured at axis of cylinder3

degree; also functions defined by equations (40) and (47
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]

i ebsolute viscosity of fluid, (1b)(sec)/(sq £t)
v kinematic viscosity of fluid, (sq £t)/(sec)
¥ wolght density of fluid, (1b)/(£t3)
0 mass density of fluid (y/g), (1b)(sec?)/(£th)

(- -]
.6 momentum thickness of boundary lsyer | % <l - %) dy |, feet

0

’ 2
4 a dimensionless quentity folCh \ :
To /
P "eddy viscosity" defined by the equation L~ = G%’
o
(1b)(sec)/(sq £t)

To drag at the surface, (1b)/(sq £t)
Pr Prandtl modulus (3600-“01’8)

DISCUSSION OF METHODS

Leminar Reglme

The first part of this section _consists of a generalized discussion
of the theory for the calculation of heat flow into laminer boundary layers.
The detalls of five methods are then stated at the end of the section.

1) Reynolds snalogy.— With the usual postulates of boundary—layer
theory (see appendix B), the hydrodynamic equation for steady two—
dimensional flow in a laminar boundary layer in the absence of a pressure
gradient® 1s (reference 7, vol. I, ch, IV)

du du 2y

u-a—x-+va—y-- g‘_}-’? ] . (l)

The equation for the temperature dlstribution in such a boundary layer is
(reference 7, vol, II, p. 610)

25 flat plate orlented in the direction in which the fluid is flowing
will .satisfy the requirements of equation (1). (Fee appendix B.)
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dT 3T v 34
ua-i-l.vg}-’-:ﬁs-yﬁ (2)

When the velocity and temperature of equations (1) and (2) are expressed
in 4imensionless form by dividing, respectively, by we the velocity of

the free stream (in the case of a flat plate the velocity in the free
stream 1s equal to the velocity at the edge of the boundery layer) and
by AT = T, — T, the difference In temperature between the surface end

the free streanm, there is obtained -

2
u@+va(§>=va§§§ _ (3)

ox
and (T /T 2/T
. a\SE Vo a(g‘xr;) ] é 635;&) )

Inspection of equations (3) and (L) reveals that if Pr = 1 and if both
equations have the same boundary condlitions, the solutlions of the two

equations are identical (that is, X = é%) and thus the temperature and

(-]

veloclty distributions are exactly similar.

If the solutions are ldentical, then

y=0 y=0
or
(g§)z=0 A To - Te _ (6
(au> T e e )
Y Jy=0

This fundamentel relation expresses the well-known Reynolds analogy
which states that there exists a direct relation between the temperature
and veloclty gradlents, which respectively control the rate of heat trensfer
and the drag (shear) at each point on the surface of a flat plate losing
heat to a stream of fluid.
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Since
To = u(?r) - e i (1)
and
fox = T_o—g_T: %)FO (7e)
equation (6) may be written as
' -—fgx_ o o EE‘E )
7Cpie 2

Since In the derivation of equation (8), Pr was postulated to be equal
to unlty, the equation should be written as

7Cplhs 2

It cannot be overemphasized that equations (6) and (9) are valid
only if each of the two ﬁmdamental conditions upon whioch they are based

is satisfled, namely that ﬁ 0, and Pr =1, If the pressure gradient

along the surface 1s not zero, equation {1) no longer describes +the
veloclity in the boundary layer but & term involving the pressure gradient
mist be added. That is, for laminar boundary-layer flow over a surface
other than a flat plate, the hydrodynamic equation is

u§3+v?ru-—%g-§+ 9%u (16)_

instead of equation (1), and the dimensionless eguations for the velocity
and temperature will no longer be identical. Reference to equations (3)
and (4) indicates clebrly also that unless Pr = 1, the equations will no
longer be ldenticsl.

A simulteneous solution of equatioms (10) and (2) is difficult except

for certain speclal varlations of g% with x (reference T, vol. II,

pp. 631~635)(appendix B). These special cases indlcate, however, that an
approximate correctlon for the pressure gradient exlsting along the
airfoll surface may be made by
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(a) substituting U, the velocity near the airfoll surface
(calounlated from the pressure distribution about the airfoil)
for u, in the Reynolds analogy f

(b) Substituting the local drag coefficient along the airfoil

(based on (%) _, 2lomg tho airfoll) for the flst-plate
. |

drag coefficient required by the Reynolds analogy

Thus the Reynolds analogy modlfied approximately to account for pressure
gradient is

e Ce
Ry (1)
p (-4

(2) Pohlhausen solution.— Pohlhausen (reference 8) has solved equations (1)
and (2) simultaneously for magnitudes of Pr other than unity by substituting
the Blasiue series solution for the velocity in equation (2) to obtain the
temperature distribution in a laminar boundaxry layer along a flat plate.

His soluilon may be written

®

= 0.332 VFr \/% (Ty — 'I‘w)_ o (12)

Since the Blaslus solution for the veloolty distribution in a laminaxr
boundary layer along & flat plate is (reference 7, vol. I, p. 135)

(%;&)Fo = 0.332 \[:—E vy, (13)

the ratlo of the temperature gradlent at the wall to the velocity gredient
now becames

-——-E—-@§) =0 . prl/3 (Zo = Do) | (14)
B
¥y=0

When this expression 1s campared with equation (6) it is noted that the
Pohlhausen solutlon ylelds the same results as the Reynolds analogy

except for the inclusion of the term involving the Prandtl modulus, Thus,
equation (14) may be utilized to calculate heat losses from a flat plate
for msgnitudes of the Prandtl modulus differing fram unity. The condition
that the pressure gradlent along the plate is zero must still be fulfilled
however, and equation (1}) 1s again strictly valid only for a flat plate.
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As before, equation (14t) may be rearranged, for

2
C.r.- p'u_m

To = p,(%) = _;L.L_—

¥=0 2

and

for " i (5)

y=0
Thus by substitution into equation (1k)
. fcx . Pr2/3 = _c_fx (15)
36007Cple 2 :

Colburn has demonstrated that equation (15) satisfactorily correlates
experimental date for the heat loss from s flat plate.

By the use of the equation for the local drag coefficient along a
flat plate (reference T, vol. I, p. 135)

Ce_ = 0.332Rey*? (16)

Equation (15) may be rewritten as

0 -
—3x ___ pr2/3  0.332Re, 00 (17)
3600—,vcpuw . .
where
u x
Rex = g

Equation (15) may be modified as before for application to alrfoils by
the substitution of U for u_, and the calculation of the local drag

coefficient for the airfoil. Thus equation (15) beccames

£ CCe
eI (1)

36007ch 2
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Equation (17) may also be modified for application to airfoils by the
substitution of U for u,. The correction for differences in the local
drag between the airfoil and the flat plate is not accounted for, however.
Thus

_....E__Pr/3=0.33239 —0.5 (1
36007050 x (19)

Equation (19) is termed the Colburn laminar equation in this report.

(3) Proportionslity between velocity and temperature distributions.—
If 1t is postulated that the temperature distribution is everywhere
proportionel to the velocity distribution, then

Il i _u-
Ty — T, T

If, in addition, the ratio % 18 expressed as a known function of the

parameter Sl- where &y 1s the hydrodynamic—boundary—lsyer thickness,

1
uo L
U 51

then from the similarity of the temperature and veloclty profiles

T-T

el R f(.l’.)

To — T 8a
where f 1s the same function as in the hydrodynamic case and &, 1s the

thickness of the thermal boundary layer. The problem of determining the
temperature distribution then reduces to one of expressing o In terms

- o}
of the known value of 3;. The ratio g?- 1s in general a funotion of both

- B

the Prandtl modulus and the pressure distribution and reduces to undty
only In the case of heat transfer from a flat plate at Pr = 1. Squire's
contribution comsists in deriving this functional relation by means of the

energy balance described in the following section.

that is,

(4) Heat balance.— When an incompressible fluid is considered and the
"dissipation effect is negleoted., an energy balance ma,v be made acroes &~
section of the boundary layer of width dx at a point x, (see Tig. 1)

ag follows. The amount of excess heat helng carried across a normal
o

to the surface at x 18 Cpy u(T - T,) dy and the difference
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between the value of this expression at x + d&x and the value at x
mist be equal to the amount of heat entering the fluid from the surface,

chat is, —k(%?-) . TFor uniform density and zero dissipation, the energy
y=0

equation for the thermal layer is

3 Xk T
E[Eu(TfTw) dy:\ =§§;<%3-.)y=0 (18a)

If uw and T are known, the point unit conductence along any
surface as & function of y is then given Dby

for 13 “u(T—T@
36007cPU"U$[U L v\moom/ Y (192)

It should be noted that, in general, principles (1) and (2) are based
on a knowledge of the velocity gradient at the surface of the body, whereas
principle (3) requires that the velocity gradient at the wall as well as
the velocity distribution be known. Principle (L) requires the knowledge
of both the temperature and. veloalty distributions in the laminar boundary
layer but does not require an exact knowledge of the velocity and temperature
&radients at the wall.

In the following paragraphs several methods whlch have been proposed
for the caloulation of laminern-poundary—layer unit conductance along wings
are compared.. R

Method of Allen and T.ook.— Allen and Look (reference 9) treat only
the case of heat transfer into laminar boundary layers, basing the
derivation upon Reynolds amalogy as expressed by eguation (11),

»

_fex O
36007ch 2

oxr
£o, = 20g 70pU X 3600

In order to evaluate the local drag coefficient Cfx, the Blasius

type velocity profile, which represents the solution of the differential
equation for flow in an ingompressible boundary layer along a flat plate
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(with zero pressure gradient), is postulated by the suthors to apply over
the entire airfoil. In terms of the lamina:o—bou.nd.a.zy—]ayer3’v thickness 9, - -
the local drag coefficient along a flat plate becames

cfx = 3(0_;{712_5_).&& : (20)

When equation (20) is substituted in equation (11) and rearranged.,
the following equation is obtained

0,8
__.“"1: = 0.765 (—-2-—36002 “3> = 0.765Pr
oxr
Lo = 9i862 KPr = 0_-%.6.5_15 (21)

because the Prandtl modulus was assumed to be unity in order to obtain
equation (11). .

Equation (21) suggests that heat is conduvcted through the boundary
layer by conduction across the thickness 8. Physically this is not
the case; heat is transferred into the boundary layer and carried within
the boundary layer along the surface of the plate. No heat is transferred
to the free alr stream by transfer across the boundaery layer.

In order to account approximately for the effect of the pressure
gradient existing about the alrfoil, the thickness of the laminar boundary
layer B 1is computed by substituting the Blasius distribution in the
von KdrméAn momentum condition end integrating. This operation yilelds en
equation for 8% of the form (reference 10)

81"{

/c |
52 ()
52 = 5.3c <U/uw>/x (_ -

Reo 8.17 (22) -
U x

c

Equation (22) for the boundary—layer thickness represents the point
in the derivation of Allen and Loock where the treatment differs from the
case of heat transfer in e laminar boundary layer along a flat plate. .

: -3The thickness of the laminar boundaxry layer O 1s arbltrarily defined
as the distance from the solid—fluld interface to a point in the boundary
layer where the dynamic pressure 1s one—half of 1ts value outside the
boundary layer. (See appendix B)
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Although the Blaslus velocity profile which is only appliceble to conditlions
of flow along a flat plate ( thet l1s, % = O) has been used, substitution

of the equation for the Blasius velocity profile into the momentum eguation
containing & term involving the pressure gradient should yield a value of &
more nearly representative of conditions at the surface of an alrfoll.

Cambination of equations (21) and (22) ylelds the final equation:

r x/c 8.17 1-/2
fox _0.332 L/(; < > d( )

360000 [Rey ( T >8.17 <:_c_>
| c

Vo

(23)

The equation ls written in this manher t0 allow ready comparison with
flat~plate heat—-transfer equations., The Prandtl modulus does not appear
in equation (23) because it was initially postulated to be unity.

Method of Frick and McCullough.— The method ol Frick and MeCullough
(reference 11) for treating the heat trans”er through laminar boundary
layers is similar to that of Allen and Look but 1s generalized to include
values of Pr other than unity by utilizing Pohlhausen's exact solution
of the differential equations for heat transfer in a laminar boundaxy
layer along & flat plate.

As discussed in ths introductlon, the Pohlhausen solution yields the

expression:
(F)o - &), Y5

As in the msthod of Allen and ILook the velocity gradient at the wall is
derived Ifram the Blasius solution for a flat plate for the condition that

at y =05, 2 =0.707. (See footnote 3.)

u
Thus
<§.u. =285y (e
J =0 5
therefore T
BT - é,——— To - Tm .
(33—’ y=0 0.765 Pr ) (25)
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Thus *
b B s (po_m) - -
= k<33')y=o = £, (To = T = 0.765 YEF §(To - T, (26)
or, for a ma@itudeh"of Pr = 0.760
£g, = 9.700 £ (27)

where 8, as in the Allen and Look report, is given by equation (22).
The substitution of this valus of & then partly accounts for the flow
conditions along surfaces other than flat ones.

The difference between the ‘coefficlent 0.700 as found by Frick and
McCullough and the value of 0.765 found by Allen and Look arises froam
the presence of the cube root of Pr in equation (26).

In general, for other magnitudes of Pi*, by substitutlion of
equation (22) into equation (26)

[ x/C" uv\8.17 -4
_fox  _ 0.332 (pny2/3 f" (u—‘”> dC_c) (28)
3600070 fRer - U )8.17@) J
Woo, [¢]

Basically this solution 1s identical to that of Allen and Look, with the
exception of the use of the Pohlhasusen solution Instead of the Reynolds
solution for heat transfer from a heated plate.

Method of Martinelli, Boelter, and others.— Probably the simplest
approximate method of camputing the point unlt thermal conductance of
the laminar boundary layer over wings is that of Martinelli, Guibert,
Morrin, and Boelter (reference 13). The airfoil surface is conceived
as a cambination of a cylinder close to the leading edge and a flat plate
beyond; the known data and equations for the heat transfer from these
suriaces are then applied to the ideal surfaces, :

(a) Near stagnation point

~ For the magnitude of the unit thermal conductance at the
stagnation point of a cylinder, Squire's analytical solution of the

ILA sumary of date (reference 12) reveals that the value of Pr
Tor the temperatures usually encountered In wing anti-licing is closer to
0.72. A nmagnitude of Pr = 0,72 is thus untilized in all laminar airfoil
calculations in the present report.
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differential equations for the boundary layer (reference 7, vol. IT R

Moo = 1.14Pr0-brep0-5 (29)

The point conductance along the leading edge alt any angle (up to about

= 90°) measured fram the stagnation point (reference 1k) can then be
a:oproximated. by the equation

T
G]f = 1.14PrO: }"‘ReDO 5‘: (i) ] (30)

or if the properties of alr are expressed by a power function in the
absolute temperature T

3
=005 (5) [ - (2 &

(b) Remainder of wing (laminar flow)

For the heat transfer along the portion of the airfoil section
which 1s considered to behave as a flat plate, the equation of Colburm
based upon Pohlhausen's analytical solution is used, (reference 15)

X __ (pr = 0.332R 1
3600C,7U (Pz) 0.33%Rex (___9_) -

where U 1s the velocity near the airfoil surface at the point x,
computed fram the pressure distribution existing about the alrfoil.

(See appendix B,) The coordinate x 1is measured from the stagnation
point. When the properties of air are expressed as a function of
temperature T

0.50
fo = 0.0562130-50(%1) (32)

For comparison with the previous two methods, equation (19) mey be
wriltten as

_fox __0.332 (p, )—2/3

S " (33)
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The heat—transfer equation (30) used in Martinelli's method for
calculating the point conductance near the forward stagnation point is
obtained from analysis and date on heat transfer near the stagnation
polnt of a c¢ylinder. The equations used beyond the leadling edge in the
method are, of course, purely flat—plate relations, but the substitutlion
of the actual velocity U at the edge of the boundary leyer for u, is
intended to account spproximately foxr the effect of the pressure
distribution along an aeirfoll surfece.

Method of Squire.— The procedure adopted by Squire (reference 16)
for the calculation of the point unit thermal conductance over the outer
surface of an alxfoll involves more lengthy computation than any of the
preceding methods, but probably represents the most rational analysis of
the aerodynemic and thermal relations thus faxr published.

It can be shown that when the Peclet modulus (u.d/a) is large, the
conditlons with respect to the temperature distribution near the surface of
a heated body pest which fluid is flowing are the same as those with
respect to the veloclity disitributlion when the Reynolds modulus is large.
That is, a "thermal boundary layer" of small thickness exists near the
surface, in which the temperature falls repidly from its value at the
surface to the temperature in the free stream. Thus it follows to define
a "thermal displacement thickness" B8, for the thermal boundary layer
in a mammer analogous to the hydrodynamic case, (appendix | B) by the
equation,

®p_T
8n = — % gy (34)
2 j; To = Too

in which T, T,, and T, &are the temperatures in the boundary layer, at
the surface, and in the free strean, respectively.

In Squire's derivation an hypothesis of fundamental Importance 1s
made ; namely that the temperature distribution is of a similar form to
that of velocity. It should be clearly borne in mind that when this
postulate 1s made it 1s assumed that the pressure gradlent affects the
temperature dlstribution in exactly the same mammer as it does the velocity
distribution. This 1s not strictly correct, and the accuracy of the
approximation is still open to experimental verification. (See appendix C.)

With this hypothesis, utllizing the Blasius serles solution for the
veloclty distribution in the laminar boundary layer of a flat plate, there
is obtalined

o | = = Q.2715 - -
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or

gy

Cx 51 52

The equation for the hydrodynemlc—boundary—layer displacement

thickness (appendix B) may be written as (refersnce 17)

X
5060 U2 ax
5 2 = '9 0
1 vx
v xU°
so that
x —1/2
5 J‘ v dx /
s o 0.5715 __J_.Ng_; 0 .
[+
* Ya.960 /v x°
or
x -1/2
7° ax

fog _ _0.332 (il. _J___) 0

3600C,7U  \[Rey \3p Pr <07
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(36)

(38)

(39)

e
The ratio —= appearing in equation (39) is a function of U ‘and

55

Pr and was obtalned by Squire by means of the integral heat balance

derived in section entitled "Heat balance.” When the Blasius distribution
for veloclity and temperature 1s substituted in this heat balance &y may

be expressed in terms of the known valuwe of B by the relation

(5 o) S
[ =

(k0)
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where ¢ is a known function of its argument which Squire tebulates for

&~ )
values of —= between 0.5 and 2.0. If the pressure gradients are not too
" 52 1/3
large, the retio = very nearly equals Pr .
1

It is important that one recognize wherein Sguire's method is similar
to the approach used by Look and Allen, Frick and McCullough, and Martinelli
and in what way it differs from these. It will be recalled that in the
latter three methods the authors use the hydrodynamic equations and
heat—transfer equations for a flat plate and include the effect of the
pressure gradient only in computing the value of the boundary~layer thickness,
which appears in their final equations for the locel unit thermal conductance,
and by substituting the actual velocity at the edge of the boundary layer.
Although it is true that Squire also used the flow end heat—transfer
equations which are valld only for a flat plate, his method represents
an advance in that it uses a corrected value of the thermal-boundary-layer
thickness camputed as a function of the Ivdrod,ynamic—bounda.ry—layer
thickmess in the final equation for f, <

Method of this report.— It will be noted that each of the preceding
methods involves a campramise or coambination of hydrodynamic and heat— “
transfer equations which are strictly epplicaeble only in the case of
boundary layers along plane surfaces, together with the mamentum equation
which is valid for any curved surface up to the point of separation, to .
yield final expressions for the unlt thermal conductance over an airfoll
shape.

: The authors of the present report have attempted an analysis of the
problem based on relations true for any boundary layer regardless of the

shape of the section and without recoursé to the Blasius flat-plate

solution. =

Two such general expressions are available: one being merely an
integrated heat balance across the boundary layer, and the other an
integrated force balance.  If one postulates-sisedy Tlow, an incompressible
fluid. and no dissipation of kinetic emergy, the firsit, - by -of'ten called the

energy equation" of the boundary layer, is :

k=B 8Hqu -7 é-/sﬁuﬁ;—aGT> (h1)
> Jo VT /o |

and the second. is the well—known von Kermdn Somentum equation (appendix B)

e} o) — : ’ o
_a_/ Ll2 dy = U _a_ udy = — §- a—E — V@_‘:"— (.';’,3) ‘ :
- Yy .
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velocity and temperature distribution in the boundery lsyer, the
following equation is obtained with the use of the Proper boundary
(Ses appendix A.)

(- 1D (=

conditions.

TN No. 1453

o1

When a fourth power polynomial is postulated to represent both the.

where

%x)(%\3+<1-%x

SN

—

of |

\._/w

+

=

el
=

Equation (41) may be written in the following foxm:

which, uwpon substitution of the polynomials for the velocity and

0 ESHu'.T.‘
&UT1L T T

)(

A
S

>h

i
ndv [The @

temperature distribution and integrating, yilelds

& o) = -2 (8)

wvhere

‘and

@ = [(=0.134 — 0.0110)Px1/3 4 (0.021 — 0.006))Pr~L

+ (—=0.006 + o.oon)Pr‘“/3]

[
S}

P

-1/3

r

(See appendix A.)

(43)

()

(45)

(46)

(¥7)

(1E)
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Therefore
fop = 36000, & (To0) (49)

Detalls of the method of derivation and the procedure for calculating
the point conductance in this method will be found 1n appendix A.

It was previously pointed out that Squirets method represented a
closer correspondence to physical facts than those previcusly proposed
in that a general emergy balance on the boundary layer was used to
calculate the ratio of the themmal~ to the hydrodynemic-—-boundary-layer
thickness. The method does, however, employ the Blasius series solution
for the flat plate to represent the velocity distribution in the boundary
leyer. In the aforementioned method this latter approximation 1s
eliminated by using both fluid—flow and heat—transfer equations which are
general for the laminar boundary layer along any type of section and which
take lnto account the pressure distribution actually existing over the
alrfoil surface. Specificelly, the Pohlhausen polynomial is used in
preference to the Blasius series to represent the velocity distridbution

in the boundary layer.

In so doing, the limitations of the Pohlhausen method should be
clearly borne in mind (appendix B). It is generally conceded that this
method glves a good representation of the velocity distribution in a
laminar boundary layer in which the fluid is being accelersted and 1s
falrly acourate in regions of retarded flow at positions distant from
the point of separation. The method becomes less end less accurate as
the point of separation is approached and breeks down completely upon
reaching that point.

Sumary of methods.— The final equations for the laminar point
unit thermal conductence for each of the four methods previously
published are as follows:

Allen and Look:

p—

x/o 8.17 -1/2
Tox _0.332 fo (‘%») d@)

3600070~ \[Fex R =)
() @)
Frick and McCullough: i ]
[ px/c o \8 17 -x 1-2/2
fox _0.332,-2/3 J;_ (ﬁ) d<g> (28)

uw-

36000570 |/Rex (_q_ )8.17<£)
o]
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Mertinelli and others:

_fex _0.332 5,72/3 S (33)
Squire:
. |
. . f o5 ax \ /2 i
°x _ _0.332 (_& __1_) 0 (39)
36000570 \/Rex \52 Pr x0°

Comparison of equations (23), (28), (33), and (39) reveals that:

(1) Equations (28), (33), and (39) account for variations of Pr
from unity, but equation (23) does not.

(2) All four equations account approximstely for the pressure gradient
exlisting along the alrfoll by substituting the velocity at the edge of
laniner boundary layer for us in flat-plate relaticms but, in addition,
equations (23), (28), and (39) make further approximate corrections by
means of the tems in brackets.

(3) Equations (28) and (33) are identical for the case of heat transfer
over plane surfaces, and all the equations are ldenticel for heat transfer
fram a flat plate at Pr = 1.

The next section of this report is devoted to a discussion of heat
flow into bturbulent boundary layers. A generalized discussion of theory
is followed by detalls of four calculation procedures.

Turbulent Regime

Explorations of the veloclty immediately adjacent to streamlined
surfaces along which a turbulent boundery layer exists are,not numerous,
but measurements of the velocity near the walls of tubes in which a fluld
is flowing turbulently have been accurately performed (references 1l& to 20)
and reveal that a campletely turbulent boundary layer probably does not
exist. Near the walls of the tube there 1s found to be & laminar "sublayer"
in which the flow remains viscous even though the fluid far from the surface
flows turbulently. For purposes of analysis a trapnsition layer, scametimes
called the "buffer layer" may be visualized as existing between this
laminar sublayer and the turbulent fluld., In the laminar subleyer viscous
forces predominate; in the turbulent region "eddy" forces are controlling;
whereas in the buffer layer both viscous and eddy forces are of the same
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order of magnitude. Reynolds (reference 21) postulated that in the
turbulent region, momentum and heat are transferred by similar mechenisms.
In the laminar sublayer, molecular heat trensfer occurs, wheress in the
buffer layer both molecular and "eddy" heat transfer teke place.

On the basis of these concepts, a boundary—-layer heat—transfer

equation and a boundary-layer hydrodynamic equation have been written
(reference 7, vol. II, p. 650). The heat—trensfer squation is

oOT _ o
Sy (EFws) (50)

where ¢p 1s the so—called "eddy diffusivity" for heat.

The hydrodynemic equation is

10p , o /,0u an
u&-+V5§;=—Ea—x—+53r-<va'§+eMa§:> (51)

where ¢y 1s the so—called eddy diffusivity for mamentum. The velocities
u and v in equations (50) and (51) are mean values with respect to time.

On the basis of the momentum—transfer theory exact similarity between
the temperature and veloclty distributions therefore exists if

(1) The eddy diffusivity for heat e¢g equals the eddy diffusivity
for mamentum ey. (This statement is the original basis for the
Reynolds analogy as developed by Stanton (reference 22).)

l (2) The Prandtl modulus equals unity. (This statement is necessary
because of the existence of the laminar sublayer and buffer layer,
in which viscous stresses and molecular heat transfer are importent.)

(3) The pressure gradient % is zexro.

If all these conditions are satisfled and if the tempersture and velocity
distributions have the same boundary conditions, the solutions for velocity
and temperature will be ldentical. Thus, for turbulent flow, as in the
cagse of laminaxr flow:

<§'}’17)1=0 - e

<8T> To — Too
37 Jyen

(52)
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As in the cise of a laminar boundary layer, this equation can be rewritten

as:
fc C_,’_‘
—_—3% _ (Pr) = X
3600070 (Pr) S (53)
or since Pr =1
-fcx Cfx

. = L
o =2 (s

This equation is usually referred to as Reynolds analogy and, as
wrltten, applies only to heat transfer from plates @5 = 0) at a uniform
temperature to a fluld with Pr = 1. Modifications of the analogy to

apply for other magnitudes of Pr and for flow conditions in which a
pressure gradient exists will be discussed below.

Modification of Reynolds analogy to account for pressure gradient g—i-.— It

the pressure gradient g is not zero, then equations (50) and (51) are no

longer analogous and the exact equivalence of u and T, even for Pr = 1,
breaks down.

Calculations for an airfoil on the basis of & heat balance in which
the temperature and velocity distributions in the turbulent boundary layer
are essumed to vary identically with pressure gradient (reference 16)
reveal that the pressure gradient mey have a large effect on the rate of
heat transfer. The calculations presented in reference 16, however, '

probably overemphasize the effect of op because actually, the pressure
3x

gradient influences the velocity much more than it does the temperature,
as noted by the fact that the temm ?ﬁp enters the veloclty equation

directly, but influences the temmerature only through its effect on the
velocities u and v.

Thus the exact influence of g& on the rate of heat transfer is

difficult to establish; one may probably sey that the effect should not

be pronounced, but rather of secondary importance. For lack of a
simultaneous solution of the heat—transfer and hydrodynamic squations

for the turbulent boundary layer, including the effect of pressure gradient,
approximate corrections to the Reynolds analogy (similar to those made
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for the lesminer boundary layer) to account for % have been presepted

in the literature, In general, these approximate corrections consist of
substituting U, the velocity near the airifoil surface (calculated by
means of the pressure distribution existing about the alrfoil; see
appendix B), for u, in equetion (54) and celculating the drag coefficient
Cp, for the airfoil at the point in question. The Reynolds analogy then

becomes:

.= (55)
36000pr 2

Modification of Reynolds anslogy for masmitudes of Pr other than
unity.— Since the Prandtl modulus for air is less than unity, the Reynolds
analogy must be modified to allow calculations for other magnitudes of
the Prandtl modulus. Several methode are available, all being based on
analyses of heat transfer to fluids in tubes:

(a) Von Kérwén modification: By anelyzing the heat transfer from a
tube to an enclosed fluid flowing turbulently, von Karman obtained
(reference 23):

Cr
T =z
2 - (56)

3600C,7uy 1+ 5@ {(Pr - 1) + loge[l +2 (Pr — l)]}

(b) Boelter, Martinelli, and Jonassen modification: By extending
the von KérméAn analysis to include a more precise consideration
of the turbulent region, Boelter and others obtalned for flow
in tubes only (reference 2h):

Cr Alpax

o = 2 Tmean (57)

600C
3 "V 5[Pr + logg (1 + 5Pr) + 0.5 logg -E% -C—f-

(¢) Colburn, by empirical correlation of data on heat transfer from
flat plates, obtained (reference 15):

fe 2/3
—~———eee P
3600Cyyuy

o]§

(5%)
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Numerical calculation of the von Kermen and the Boelter method
reveals that for a range of Pr between 0.5 and 10, the complex expressions
involving Pr reduce to that of Colburn with fair accuracy (referemce 24).
Thus, for flulds with 0.5 <Pr <10  the modified Reynolds analogy may be
rewritten as:

£ Cr. .
fox  p23 T (59)
36000pr 2

When the equation for the local drag coefficient along a flat plate
(reference 7, vol. II, p. 362)

9_25 = 0.0296Re,0+2 “ (60)

is substituted into equation (59), the expression beccmes:

fox —2/3n. —0.2
= 0,0296Pr R ¢ 61
Bo0c70 - 00 °x (62)

This equation is called "Colburn's" turbulent heat—transfer equation
in the remainder of this report.

Heat balance.— If the velocity and temperature distributions are
accurately known in the boundary layer, & heat balance willl yield a
simple method of obtaining the unit thermal conductance from the airfoil.
As in the case of laminar flow

£ ® -
%x 12|y / u (T — Tw) iy (19a)
3600C,U U ax o (T —1T,)

The difficulty in application of this method lies in the negessity
for accurate knowledge of the velocity and temperature distributions.
The methods based on the Reynolds analogy and its modifications require
only a knowledge of the veloclity gradient at the suriace of the solid,
as mey be seen fram an inspection of equation (52).

d

Method of Frick and McCullough.— Utilizing the Reynolds analogy,

o _ fom T, — T,,)
<a3’/y=0 <§;>y=0< U (e2)
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Frick and McCullough cbtaln

%.:; = CpTo (—-—-—T° ; T“) (63)

In order to apply this equation to heat transfexr’ from e.irfoil surfaces,
the local shear T, 1is calculated by means of the von KarmAn expression for

the skin friction over a flat plate with a fully developed. turbulent
boundary layer. Thus

n

ro = £ (64)
t
where
¢ = 2.557 log, ( 4,075 ‘{;9-) (65)

in which the momentum thickness 6 1is calculated fram alrfoil boundary-
layer data. (See appendix B.) Substituting for To in equa.tion (63)

and rearranging ylelds

Zx ;_lggm%( f.:) (T, — o) (66)

If one considerse ——QECU— = 6‘1‘ & characteristic length for the turbulent
Rec@

boundary layer, then
T=EPI‘(T¢°—TQ) (67)

or
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Letting? Pr = 0.760, Frick and MeCullough obtaim®

fog = o.gTsok (68)

‘This characteristic length &p should not be confused with the thickness

of the turbulent boundary lsyer. For a flat plate this latter quantity is
glven by the expression (reference 7, vol. II, p. 362)

S = 0.37Rex0-% (69)

from which it 1s seen that &p 1is approximately proportional to x and
inversely proportional to the boyndary-—-layer thickness,

In sumery it may be stated that the treatment of turbulent-boundery—
layer heat transfer in the report of Frick and McCullough assumes complete
equivalence of skin friction and heat transfer and uses the best method
Inowvn for the calculation of turbulent skin frictiom.

In order to campare the avallable methods for calculating heat
transfer into turbulent boundary layers, equation (68) 1s rewritten
for ready camparison with the flat-plate equations to be derived in the
next section. The equation of Frick and McCullough beccmes:

0.2 :
R .

“fex o 0.0296Re, 0+ 2 | X S (70)
3600Cp7T 0.0296¢

The Prandtl modulus does not appear in equation (70) because a magnitude of
Pr = 1 was taclitly assumed in its derivation.

5As in the c¢ase of the laminar sublayer Pr = 0.72 1is more correct
and is utilized 1n the calculation of this report. .

6It should be kept in mind that equation (63) is based on equation (62).
Equation (62) does not include Pr, but in its derivation a Pr value of
unity 1s postulated. In order to obtain equation (63) fram equation (62)

a Prandtl modulus of unity is utilized. In order to obtain equation (67)
from equation (63), equation (63) was multiplied and divided by Pr Thus,
as long as proper values of u, Cp, and k are utilized in equation (é1),
substitution of the proper magnitude of Pr, even though differing from
unity, will yleld & value of fcx which in reality is calculated for

Pr =1 and is therefore too low. In a later sectlon the equations of
Frick and McCullough are modified to corréct approximately for magnitudes
of Pr not equal to unity. ' T ST
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Method of Martinelli and others.— For the case of turbulent flow

beyond the leading edge, the Colburn equation for turbulent heet transfer
from flat plates is utilized. Thus

fox - —2/3n, —0.2
3% _ - 0.02096pr =/ 3R . : (71)
3600C,7U °x

or expressing the properties of alr approximately by a power function
in T +the absolute temperature,

0.60

fop = 0.51'1*0’3(;0—%5) (72)

When equations (70) and (71) are, compared two points of difference are
noted;:

(1) The texm in parentheses in equation (70) represents an approximate
correction to the flat—plate equation for the pressure gradient
exlsting sbout the alrfoll, in additlon to the use of the velocity
near the alrfoll surface in the flat—plate Reynolds analogy.

(2) Equation (70) does not involve Pr, whereas equation (71) includes

Pr"?/ 3, Since the latter equation accounte for the Prandtl modulus

more accurately than the former, the equation of Frick and
McCullough, to be more correct, should be written as:

iy : Re 0.2 o
%% . _ 0.0096pr2/3pe 0.2 [ Fox >
e 0.0296 “Rey 50298 E2 (73)

Magnitudes of £, % calculated from the original Frick and McCullough

equation are tims too low by the facdtor Pr"z/ 3, Bquation (73) is called
the "modified Frick and McCullough equation” in this report.

Methods of Squire.— Squlre (reference 16) presents itwo methods of
calculating fcx for an airfoil. The first method employs the Reynolds

analogy as modified by von Kermén. Thus

Cf . .
. “x
x . .- 2 (7h)

360070 4, 5 \l_géi {(Pr - 1) + loge[l + % (Pr ~ 1)]}

C )
where —-2-’-"'- is calculated at each point along the alrfoll by utilizing the

-



von Raman expression for skin friotion along & flat plate with a fully developed turbulent
boundary layer, as outlined in the method of Frick and McCullough.

In order to campare equation (74) with those for flat plates, it may be rewritten as:

0.2
fcx - 0.02963911_0'2 1 Rey . (75)
360001’7“ 1+ ?{(Pr - 1) + logg [1 + 2 (Pr — 1)]} 0.0296¢

The first temm in parentheses corrects the Reynolds analogy for the flat plate for
magnitudes of Pr other than unity. Nmerically (for small values of Pr) the tem is

approximately equal to Pr"e/ 3. The last temm in parentheses represents the approximate
correction to the flat—plate equation for the pressure gradient exigting ebout the airfoil
and 1s ldentical to that utilized by Frick and MoCullough,

To indioate the probable effect of pressure gradients, Squire presents an altermative
fom of Reynolds amalogy by assuming that the temperature and velocity distributions are
exactly similar in the presence of such gradients.

The energy equation for the boundary layer is

1w - L & -
3¢ ]; u(T .Tno) dy 36000p7 _ (76)

When it l1s assumed that the temperature and veloclty distributions are similar
(Pr = 1)

(1)

4
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equation (76) beccmes

fox 13 u n
- S U =1 -2 8
sg00s5 " 55 |” Jo Se-§)w (78)
ae , Ut
"—'E-I--ﬁ-e

whers 6 1s the momentum thickness of the boundary layer and equals
- ]

f %(l - %) dy, (see appendix B) and the primes denote differentiation
0

with respect to x. From the momentum theorem, however,

o To U (s >
=g - o( 42 (79)
x g2 T )
so that
fox To Ut 5
=2-Lo(241 (80)
36000570 oU U 6

As has been mentloned previously, a plot of £, against x/c for the
usual Reynolds analogy and for this latter modification indlcating the effect
of g% shows large deviations for an airfoil example at Jcﬁ > 0.4,

c

T f -
Because —%2 = _2_1:, equation (80) then directly indicates the
o _

oomparison between the additional correctlon for pressure' giadient and
the usual Reynolds anaslogy for a flat plate.

Also since the momentum theorem (equation (79)) and the energy
balance are equally valld for laminar and turbulent boundary layers,
equation (80) epplies as well to the laminar case, and the term to the
right of the minus sign affords an indication of the relative effect of
pressure gradient on the heat transfer into leminar and turbulent
boundary layers.

In order to ccmpare equation (£0) with the turbulent equation of
Frick and MeCullough and the flat-plate relations, it may be written in
the form .



£ . RexO.E .
3-6—0-%“?-7&]_— = 0.029638:_0 2 (m} - [%— (-g— + 1) 9] (81)

Summary of methods.—~ The final equations for the point unit thermal conductance for
turbulent boundary layers, are as follows:

Frick and McCullough (method I)

_for 0.0296Re, 0+ % (__@;no_,_:“i_f_é) (70)
3600C,)T 0.0296¢ |
Modified Frick and McCullough (method IT)
: 5;“90-%;;6 = 0.0296Rex 0+ 2p:2/3 (%%) (73)
Martinelli and others:
fex | 0,0296Ra,~0+2p2/3 (71)

36000P7U

Squire (method I)

0.2
= 0,0296Rey "° - ( - 2) (75)
1+ {(PI‘ -~ 1) + log, [1 + _Z. (Pr — l)]} 0.02906¢

Cx
3600070

e\
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Squire (method II)

0.2

£ R
— 2% _ - 0,0296RexC*2 _:1._.0_ LA - T 1> 8 (81)
3600070 0.0296t 2 U \e -

The bracketed texms in these equations direotly indicate the corrections
made for pressure gradlent and varlations in the Prandtl modulus.

Camparison of equations (70), (73), (71), (75), and (81l) reveals
that: B

(1) Equations (73), (71), and (75) aoccount for variations of Pr from
unity, but equations (70) end (81) do not. :

(2) A1l five equations account spproximately for the pressure gradient
existing along the alirfoll by substlituting the velocity near the alrfoil
surface U for wu, in the flat—plate relations. In addition, equations (70),
(73), and (75) make further approximate corrections for the variation of
point drag coefficient along the ailrfoil surface. Finally, equation (81)
includes a further corrective term which results from the calculation of
e heat balance on the boundary layer. The last equation probably over—
emphaesizes the role of the pressure gradient.

(3) Equations (70) and (71) are identical for heat transfer from a
flat plate and have been chacked experimentally for this case. Equation (75)
ie practically ldentical to equations (71) and (73) for heat transfer
over a flat plate, and basically probably accounts for variations of Pr
from unity more precisely than equations (71) and (73) which are based on
an empirical correlation of experimental data.

(%) Although equations (70) and (Tl) are identical when g—f-: = 0, the

results from these equations are strictly applicable only to flulds with
Pr =1,

(5) All equations are identical for heat transfer from a flat plate
to & fluid with Pr =
DISCUSSION OF NUMERICAL EXAMPLES
Methods Employed in Laminer Regime
In order to compare the various methods described for calculating the

laninar point unit thermal conductance ovexr wings, en airfoll shape weas
selected whose aerodynemic characteristics are very accurately known.
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Such a section, for which the pressure ard velocity distribution has been
calculeted theoretically and thoroughly tested experimentally, is a
Joukowski profile whose characteristics are shown in figure 2. This
particular profile is called "aerofoil A™ by Bairstow and numerous tables
of data concerning it will be found in reference 25,

For purposes of calculation, an airfoil with a chord of 7.78 feet
was chosen which was to be malntained at a constant temperature of 70° F,
while moving with an angle of attack of 1.5° at a velocity of 253 feet
per second through air at a uniform temperature of 30° F. The velues of
fcy camputed by the different methods for this example are shown

graphically in figure 3.

It is seen that all of the methods discussed give answers that are in
failrly good agreement. The reasons for differences are readily observed
by inspection of table I in which the various terms of equations (23), (28),
(33), and (39) are presented. For example Allen and Look's values are
obviously toc low because the calculations were based ona Pr value of 1.
The values calculated by equations (33) and (39) are in very good agreement,
but some of this agreemsent is fortuitous, as table I reveals. Thus, the

individual corrections of Squire for —2 and Pr are of such a magnitude

that their cambined effect ylelds results which are in very close agreement
with those of Martinelli and others; calculations on a different airfoil,
however, may give results which are considerably more at variance.

If, as i1s often the case in practice, an approximate value of the
external conductance, or a value indicating an order of magnitude, is
desired, then the method of Martinelli is the simplest and most rapid and
i1s usually of sufficient accuracy; in other cases the accuracy of the
answer desired would determine the cholce of method, It should again be
remarked In this comnnection, however, that the example cited for purposes
of comparison does not represent an extreme case of pressure gradient
around an airfoil and that the deviations among the methods due to the
effect of the pressure gradient on the heat transfer might be considerably
greater for other types of shapes, such as thick wings, fuselages, and
so forth.

Msthods Employed in the Turbulent Regime

In order to campare the various methods for calculating the unity
conductance along an airfoil for the turbulent boundary layer, the wing
profile utilized by Frick and McCullough (NACA 65,2-016) was selected for
calculation. The airfoil has a chord of 7 feet and was assumed to be
moving with a velocity of 206 feet per second. The average temperature
of the air in the turbulent boundary layer was taken as 40° F.

The five methods of calculation previously discussed were applied to
the airfoil, assuming & turbulent boundary layer to exist from x = 0. The
results are plotted in figure 4. It is noted that the five methods yileld
results, which, as in the case of the laminar—-boundary-layer calculations,
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are 1n falr agreement. Certalin dlfferences are apparent, however, which
merit further discussion. .

- In order to facilitate comparison of the various methods, the pertinent -
terms of equations (70), (73), (71),(75), and (81) are presented in table II.
It is apparent from this table that Frick and McCullough's original
-equation is too low because of the tacit supposition that Pr = 1. Inclusion
of the.approximate correction for Pr in Frick and McCullough's methods
ralses the curve about 20 percent. The remalning methods check c¢losely

up to = = O.k. At this point Squire's heat—balance method diverges
P P P q g

rapldly frcmi the other curves. Ixperimentel evidence 1s not avallsble to
check this phenamenon, but it is probable that the heat—balance method

proposed by Squire overemphssizes the importance of g§

The rather close camparison,of the method proposed by Martinelll and
others with the more refined techniques of the other authors is partly
fortultous, since for airfoils with abrupt pressure gradients the resulis
from the verlous methods may be conslderably more at varlance.

Unit Comductance at the Stagnatlon Point .
Allen and Look and also Frick and McCullough suggest the use of the
approximation «

2 02 r ’
B = = - (82)
St88 "~ SReq ©

for camputing the value of the point conductance at the stagnation polnt,
where r 1is the radius of curvature of the leading edge. This equation
considers the airfoll leading edge to be elliptical in form. The equation
of the point conductance at the stagnation point then becomes

fod Ugd L
Nustag = —-%— = thed—;— = 2,42 \, RGD (83)

where d 1s twice the radius of curvature.

At the stagnation point the equations of Squire reduce to the form

-

2 N )
Rep
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Singe
0.5715 . [°1 )
£, =222 i = (36)
x 83, B2,
f.d 51 )
Nus‘bgs = T = 1.63 \’E‘e]) 'BE (85)
1
where = is found by means of the equation
2
8,\2 /8 ,
(._%) q><_.2.> - 1.158 (86)
By i
The texrm -é— accounts both for variations in Pr from unity and for the
=}

pressure gradient about the stagnation point. At Pr = 0.720 equetion (86)

)
gives -51- = 0.581 so that
2

Nugtag = 0-95 |Rep ' ’ (87)

The equation proposed by Martinelli for the stagnation—point conductance
is that derived in the theoretical snalysis of heat transfer from the
forward. end of a cylinder, nemely

Nu;tag = 1,14Pr0+4pe 045 ' (29)

orat Pr = 0,720

Fugtag = 1.0 (Rep - (88)

Camparison of equations (83), (87), and (88) immediately indicates
the degree of correspondence between each of the three methods and the
stagnation—polnt conductance for the leading edge of a cylinder. In the
method of Martinelli, the flow at the leading edge of the airfoil is
initially postulated to be exactly that of the flow at the forward portion
of a cylinder and hence the alirfoll stagnation—point conductence corresponds
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exactly with that of the cylinder. Apart from ‘this method it is seen that
Squire's method gives very much better agreement with data obtained at

the stagnation point of & cylinder (reference 7, ch. IV) than does the
method of Allen and Look. . )

If the cylinder—stagnation—point value of fcx is consldered as being

very close to the actual leading—edge value for the airfoll, then the error
made by Allen and Look In setting the ratio -a-lé equal to unity 1s well

i1llustrated by the wide discrepancy between thelr value of the polnt )
conductance at the stagnation point with that obteined from analysis of
heat transfexr at the stagnation point where the pressure gradient is
extreme. This discrepancy resulting from use of the Allen and ILook method
i1s an Iindication of the superiority of Squire's method when applled over
the entire airfoll.

If in Allen and Look's method the leading edge of the alrfoll is
consldered to be cylindricel instead of ellliptical, their equations reduce
to

0.289rc ;
Bytags =~ . (59)
Btag Reo
and.
f.d - —.
Wgiag = = = 2.0 \[ReD (90)

rather than equations (82) and (83).

When the expressions for the polnt conductance at the stagnation
point are spplied to the Joukowskl profile, which was used as an example
in comparing the methods for the laminar regime, there is obtalned:

£

cxsta.g
Mothod (Btu/(br) (sq_£5)(°F))
Martinelli 109
[
Allen and Look (elliptical) 264
Allen end Iook (cylindrical) ' 218

Squlre 10k
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Propeller Calculatlion

The problem of heating propellers to prevent the formation of ice
is beconing of increasing importance in the alxrcraft industry, and some
method of calculating the point unit themal conductance on the outer surface
of the propeller would therefore be desireble,

The flow conditions around a propeller ars camplex, and the theory is
rather imperfectly developed so that an exact enalysis of the problem in
a mammer similar to that employed for an alrfoll section in this report
does not at present seem practiceble. )

It is well known, however, that a propeller may be considered as
being made up of a series of alrfoll elements, and a rough approximation
to the varlation of the point conductance radlally and chordwise might
therefore be obtained by calculating the chordwise distribution by any of
the methods described herein for an sirfoll shepe, for each of these elements.
Such a procedure was adopted here by applylng Martinelli's equation for the
laminar and turbulent cases to four different sectlons of & propeller shape
whose characteristics are described by Balrstow (reference 25, p. 66L4).

Because experimental date on the pressure distribution around the
blade elements of the propeller were lacking, the approximate equation of
Selbert (reference 26)

U = unn (l * —-—L—-—-c > (91)

4 cos o
+ for "upper" surface of airfoil
— for "lower" surface of airfoil
was used to calculate the velocity at the edge of the boundary layer.

The propeller 1n question was assumed to have a radius of 5 feet, to
be _rotating at 2000 rpm, and to be maintained at a surface temperature of
_70': F, in air at 30° F. The lift coefficlents for each of the sections
were obtained fram reference 25 (p. 664) in which tables of data are
reprofuced which were taken at the National Physical Ieboratory. It was
asgumed that the angle of incidence of each of the blade elements was
the same and equal to 6°. A plot of the results and & diagram of the
propeller selected for the example are given in figures 5 and 6, respectively.

In calculating the heat loss from the surface of the propeller, two
ceses were postulated: (1) The flow remains laminer for the entire chord
of the airfoil section for both the upper and lower surfaces, and (2) the
flow is turbulent over the entire chord for the upper surface and laminar
for the lower surface. In each of these cases an average f; for each

section was found by graphically integrating under the curves of figure 5



140 NACA TN No. 1453

and. the total heat loss was computed by adding the heat dissipation
from each of the four sections. In the turbulent case this total heat
loss was found to be 20,487 Bitu per hour, whereas in the laminar case a
value of 5772 Btu per hour was obtalned.

Very little is known about the location of the transition point on
propeller shapes, but 1t is probable that the flow is not completely
laminer except possibly at positions close to the hub. Until further
information 1s obtalned regarding the nature of the flow about a propeller,
it is probebly safest to assume the turbulent value for the heat loss as a
design estimate. :

Department of Mechanical Ingineering
University of Calliformia -
Berkeley, Calif., September 29, 194k



AFTENDIX A
METHCD OF DERTVATION AND FROCEDURE FOR CALCULATING POINT CONDUCTANCE

60$he general epergy equation for an ideal gas mey be writien (reference 7, vol. I1I,
p. 607)

chPgT_E..%quVETo,@ (92)

where D indicates a total derivative and ¢ 1s the "dissipation function."

For the case of two-dimenmsiomal flow expression (92) reduces to the form

oy (ZsZorZ)-(ReuZor ) n(B )0y o

dy ot ox P By
Under the usual postunlates of boundary~layer theory the terms gE and. g—-—a‘}: are set equal
: : A \8 y x“
to zero; when (%) is substltuted for ¢

Cp —+u—+v cuBYo J'kL (o9k)
oy (B esZer2)- (0 B) n e (@)

Ir Oy 1s the thickness of the therma) boundary layer, on imtegrating equation (9%) from
y=0 to y=05g,

JCP‘/;ﬁH(pg-TE'+pug—i+pv f(-q-uéz dy = -Jk /‘Dﬂ—+u/ ( dy (95)

ECHT °*ON NI VOVH




gince .sﬂy vanishes at y = Bgs which is the cuter edge of the thermal layer. Now

oy g

j; pu%ay%ﬁpuw—fo 1 2 (o) ag - () o S8
% b [Pm
L pv%dw=pﬂ]o -1 Taa;(pv)dy

L ds-—f o= (oyaty - | TR

(96)

(9m)

(98)

Also v vanishes for_ ¥y =0; apd for y = g 1t follows from the equation of contlmnity that

Dv)y_5H=—faE -&' E(Pu)]

=-—-f6ﬂ —'é'x_f pudy+(p)y=aﬂsi‘—li+(pu)ynaﬁa;—sﬁ

Hence making use of contimuity there is obtained

(99)

et
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S/ op 3T T > [Pm
j;(pgg+pu&+pvyy>dy=g;‘o pT dy

> [%m > [Cm 3 [°E
+é;\l; pquy—Tl(-a—t-j; pdy+&£ ou dy ) (100)

where Ty 1s the temperature at the outside of the layer. When equation (100) is substituted in

equation (95), the following equation for the integrated emergy balance on the thermal boundary
layer ls obtained: t

> [m > [Cm > || > [
JCPSEO pTdy-l“&o pqu;)"—T]_SEO de+§£0 pu dy

o / - O /3y |

The second. aforementioned general integral relation is the well—kmown von Kerman
"momentum equation,"® .

3 5 5 B
d dy + 2 245 —ul 2 3 -5 [
3 Jo pu-dy+gc-L pu” dy U<atj; pdy+5;J; pudv> = B?x V<5}- - (102)

If steady flow and an incompressible fluid are postulated and the dissipatlion term 1s
neglected, these two equatlons reduce respectively to

EGHT °*ON NI VOVN

€y
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Ly
og Sg
N Y - = — afSL
Bxfo ul dy - Ty BxL uc-Lv a@y o (103)
5] s
2 [® e _u2 __8%_,Mu

When a fourth-power polynomial 1is postuleted to represent the velocity
distribution in the -boundary layer, that 1s

%: = ay + 'by2 + cy3 + d;{u (105)

with the boundary conditions

thexrefoxre

u 1 Jp uu't | (106)

Pohlhausen'’s expression (reference 27) is obtained

o)) CoPYE (o) e
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where

O | S
e (108)

?J
I
<%

Substitution of the dxrag at the wall from this polyncmial into the
momentum equation ylelds as an equation for A

At = t-% a(\) + yf]'_". [th()\.) + 1.] (109)

where g(\) and h()\) are known tabulated functions of the argument
(reference 7, vol I, p. 160), and primes denote differentiation with

respect to Xx. At the point of stagnation A = 7.052 and A! = 3h.05%';

with these initial conditions equation (109) can be integrated either
mmerically or by the method of 1soclines. If the temperature distribution
is assumed to be of the same general form as that of velocity, namely

i?-=a.y+'by2+oy3+dyl" (110)
1

with the boundary conditions —_

therefore

=0 (111)



there is obtained

b o)W @) =

Equation (103) mey be written in the following form,
9 u T d %5 u T
ur -7 U = -
& 1 /0 T Y- fo Ty “(g‘y‘)y,o (113)

If the "kinetic 1iemperattu‘e rige" is set equal to zero, then the temperature at the edgs of
the boundary layer is the same as that in the free stream, that 1s T; = T,, emd

o, oy
2 |y 2T gy - 1 -2 (oF 114
ax (j; o ¥ L Udy> T..@:r)yd) o)
Substituting ;:eq_uations (IE.O"{) and (112) a.:ﬂlin-begrating, :

Laﬂ % dy = sﬂ[(l + o.oaax)(isg) + (—0.500 + 0.125);)(%15-)3 + {0,200 — o.o33x)(%)h] (115)

3]

om)(%) + (079 4 o.ugx)(%) + (0.19% — o.ow)(%'i) } (116)

: i

Oy _
L %-T-?l-dy=sﬂ(o.866+o.
It is well known that as a good approximation (reference T)

% x mL/3 | (117)

o
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s0 that we may define two functions

J;sﬁ % ?ET' dy = F1(»,Pr) = (0.866 + 0.0720) P 2/3
: 1

+ (~0.479 + 0.1_1.97\.)Pr_1 + (0.194 — o.o32x)1>r‘1‘/3 (118)

LEH% &y = Fp(r,Pr) = (1 + 0.0830)PF /3 4 (=0.500 + 0.1250)PrL

+ (0.200 — 0.0331)2r2/3 (119)
and let
?=F —-Fo

Then equation (113) reduces to

3
2 (ut) = - - (& s (120)

Since all temperatures are measured with the surface temperature as a
datum,

= ) s
< = 7% > (Uszep) x 3600 (121)
The procedure for calculating the point conductence in any given case
would then be:
(1) Calculate U' end TU'' either graphically or analytically.

(2) Compute the chordwise distribution of A by Pohlhausen's method
from the experimental pressure distribution. (See equation (57a).)

2
(3) Find 8 by means of the wvelation A\ = B—VU'.

(4) Find By by means of the relation %E = Pr"l/ 3,

(5) Compute the functions F; and F, and hence o,

(6) Substitute in equation (121) and evaluate the derivative graphically.



It is seen that this procedure permits extension to cases in which compressibility and
dlssipetion offects are to be considéred. When o = £ and § = ~gU0' ave substltuted
in the general epergy equation for steady flow,

(e[t ern [Ten) [ o) o [ om
Jc }'ifan - T 9 +ﬂ'- 2 =_J-kBT + 3—22
PlRx o PV "0x | | v 5 L FY (g)ymo Ml}uﬂ(ay) (123)

! t 5B,' BH 2
pUu” Ly = - gx[E e
TR g A Jk(a?)yﬂ+u\£ (5) d'y | (12
1% |E P 3 Ty 9p n IT1 3 u
To\Ex fy "YtEx Y REf TV FH Y
wr (e g E (u)’ -
M o z ¥ J'k(gs)y=0+ul; (g) v (=)

EGHT "ON NI VOVN




!:UI‘U

: o g ;G oy
1 C Lofps | 2llg Paofu [Fuln
Jcp[iipv j; g a”‘( I} %d‘y> +§"U2U L T ¥R ax(mlj; UTdy)J
Iij' SHPIE (=] 33 BH au 2 |

Wy [ Tl1 du\
T b U_T'd"”_?'a—xf Z = =«-.n:@y)y=0 fbﬂ(%)dy (127)

The polynomials of equations (107) and (112) permit the evalustion of the imtegrals

5y ' iy
n 1 l
j; g dy, Lﬁ o _E. and f (Q_ (128)

When these Integrals are called Fl(klPr) s Fp(AqPr), and F3()\.1Pr) , Trespectively, equation (127)

becomes

R R iyl JC,T

g [(-'l + U') BEFy (UQU' ERTI —T—)sﬂrz + ﬁ(aﬂrl' + 8E'Fl)

- mle(&H'FE + 51#‘2')] = -Jk(%")ygo + uFs | (129)

EGHT “ON NI VOVN
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!

c Ut(1l + RT !
R RTy .

+ U(eg'Fy + OgF1" ) - UT1® ((BgFe + Oae" )J + 1T3

-1-]'1
F
RTy Iy J_’CPT e

(130)
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APPENDIX B

DISCUSSION OF CERTATIN BOUNDARY~LAYER CONCEPTS T

In the develomment of boundary—layer theory, certain basic postulates
are tacltly made which, because they are not clearly stated, may cause
the engineer who is not primarily an aerodynamicist considerable difficulty.
The purpose of this appendix 18 to discuss several of these points somewhat
more thoroughly than is done in the usuval relferences on aerodynamics.

There are two general methods of analyzing boundary—layer problems:

(a) The solution of the boundary-layer differential equations
(equation (132)).

(b) The solution of the boundary-layer mamentum equation
(equation (104)).

The first part of the eppendix deals with method (a); the second part
deals with method (b).
Boundary-ILayer Differential Equations

The incompressible—flow boundary-—lsyer differential equations are
derived from the general hydrodynemic equations with the following
postulates: '

(a) The flow pattern about the object is txro—d:!.mensional

(v) The thickness of the region next to theo solid surface, in which
the velocity gradient 1s large, is small camnared with the other linear
dimensions of the obJject. _ e

(c) The flow is incompressible.

(d) There is no separation of the flow from the solid obJect.

(e) The fluid in contact with the solid surface has no velocity
relative to that surface.

Reference 7 (vol. I, p. 610) presents a derivatlon of the boundary—
layer equations, for curved surfaces, on the basis of these postulates.
The boundary—lsyer equations are: (See also fig. 1.) ) .-
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W, m, W1, %
at“"ax“’ay pax”ay
_.k112 = x op # (131)
p Oy
.@1.4._3!..::0
x dy
J

The following firvther postulates are usually made 1ln solving
equation (131):

(e) Velocity u ie not a function of time.

(£) f(?) dy is negligibly small even along a curved surface, so
o) J

that the pressure 1s postulated to be invariable in the direction normal
to the surface.

The equations then reduce to:

.
du du _ _123p d%u
u8x+vay- p8x+vay
- (132)

du . OV

— 4 == =0

3x 9dy

o

By meking postulate (f), all problems of iwo-dimensional boundary-—
layer theory became problems of flow along & plane surface (flat plate)

along which the pressure gradient g—% varles in some glven manner.

The boundary conditions imposed on the boundery-leyer equations,
regardless of the variation of ?-&-P are
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=
I
o

at y =-0
and X = v=20
at y == ( u=U
(133)

J B=o
and x =0 %

% _ o

& —_—

The extension of the solution to y = » assumes that the whole fluid
field is in viscous motion. With these boundary conditions, the veloclty
proflle at any x will have the form shown in figure 8.

Since at y =w, u =T, __;au. =0, and g—yi’u = 0, the boundary-lsyer
equations far from the plate becoms:
1 0P U
-2 _yu 134
p OX o (13%)

Integration of equation (13%4) yields Bernoullils equation.

Since % does not vary with y, the boundary-layer equations
became :

du Su _ .. 93U 3%
uE+Vay—Uax+V%-2
3 > (135)
AL v _
gf+yy—‘0

-

As was previously mentloned, these eq_ua'tiom are strictly applicabls
to a flat plate only. Approximate solutions of these equations over curved
shapes are obtalined by postulating various variations of U with x and

‘substituting this resulting form of U g;U into the foregoing equations.

Only certain special forms of U= f(x) can be handled mathematicelly.

The following table was campiled fram the solutions of the boundary—

layer equations presented in reference 7T, and reveals how flow about
various objects is identified with certain varlations of U along a plane

surface.
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193p U 1 1
U - == a2l == Equivalent flow system
o 9x ox b J
Constent 0 Flow along flat plate
Byx ﬁlgx Flow near stagnation
point of ¢ylinder
c c? |
x ——— Flow in convergling
x3 chamnel
m =0 Flat plate
oxit c2m x—1 m =1 Stagnation point
m = -1 Converging channel
M=co M=co Any ocurved shape if series
E cx® E ¢°m x2m—1 is known from experimental
m=1 m=1 ' data

A diagram of the veloclity distribution near the stagnation point of
a cylinder, obtalned from a solution of the boundary-layer equations, is
shown in figure 9. A discrepancy with the actual physical system is
immediately apparent. Filgure O shows the velocity far from the obJject
increasing linearly with x, whereas obviously in the physical system
the velocity far from the surface remains constant.

The flow pattern gbout the actual physlcal system is shown in
figure 10. This Tigure reveals that the velocity in the physical system,
at any fixed value of x, increases as y Iincreases, reaches a maximum,
and then decreases to an asymptotic magnitude w, &8s ¥y - «=. Comparison

of the veloclty distribution gbout a cylinder obteined from potential
theory (zero viscosity) with the experimental points would show a good
check until the surface of the cylinder was approached closely; the
potential solutions would then became greatly in error. Conversely the
solution of the boundary-layer equations would show good agreement with
the data for magnitudes of y from zexro to about the polnt of maximum
velocity; beyond this point the boundary—leyer solutlon would deviate
greatly from the data. :

Because of the deviation of the boundary—layer solution from experimental
results for flow around curved obJects, & limit must be placed on the region
in which the boundary—layer solution is applicable. This limit is ocalled
the thickness of the boundary layer. In analyzing boundary-layer problems
asrodynamicists as & rule concern themselves with what occurs within this
boundary layer and usually neglect campletely the flow outside of this

boundary layer. .
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It 1s-evident that a unique definition of the thickness of the
boundary layer & is difficult to establish, Several possible definitions
are:

(a) The point y, where the boundary layer and potential solutions
intersect

(b) The point y, where u = 0.99U0, or any other arbitrary fraction
of U

(¢) The point y at which the total pressure reaches & fraction F
of the total pressure in the free stream

Definition (¢) of & (for incompressible flow) is eguivalent to the point y
at which u ={F U,

(4) A characteristic length, called the displacement thickness
8 may be defined, so that

LﬁUw—(U51)=L¢u@ (136)

If the flow along the body obeyed the boundary-layer equation, the rate

- -]
of flow of fluid across any x would be f U dy. This is less than the
o}

-]
quantity f U dy Ybecause of the retardation of the flow near the surface
0

of the obJect. The difference is called UBl, thus defining the character—

istic length O3. The length &3 1s not the boundary-layer thickmess, in
itself, but 1s related to 1t. -

The exact definition of boundary-layer thickness adopted should not
influence the final results of a boundary—lsyer analysis as long as the
definition is utilized in a consistent manner, since the analytical solutions
of the boundary-layer equations never involve the boundary—-layer thickness
directly.

Fram figure 10 it is evident that in the pliysical system the velocity
outslide the boundary layer varies with y., In asrodynamic analysis,
however, the velocity U 1s called the velocity at the edge of the
boundary layer. The velocity U is defined by

U _asc_ = E _a:x__ ) I R _'-_'*(13)-|-8.)
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whence

2
LS e p + Constant
2 P

2
P + EE— = Constant

=

Thus U may be calculated from the pressure distribution around a curved
object. It is defined by equation (134a) and is the velocity Jjust outside
the boundary layer only in the sense that for any fixed value of x, at
one point y outside the boundary layer, the velocity U will exist. The
correct value for the velocity at the edge of the boundary layer will, of
course, depend upon the definition of the boundary layer adopted. Utilizing
U indiscriminately for the velocity at the edge of the boundary layer in
conjunction with different definitions of the boundary-layer thickmess will
lead. t0 erroneous results,

It has been shown that the boundary-—layer solution is not applicable
outside the boundary layer. If now it 1s postulated that the flow outside
the boundary layer does not affect the velocity inside the boundary layer,
the laminar—boundary-layer equetions may be applled to a system even
though the flow outside the boundary layer is turbulent, as long as the
Tlow within the boundary layer remains laminer., Once the flow within the
boundary layer becomes even partly turbulent, the boundary-—layer equations
are no longer appliceble.

Momentum Egquations

By the considerations of the flow within the boundary layer it may
be established that a certain thickness © exists in which the boundary-—
layer equations are applicable. Ii it i1s further postulated that:
(2) the exact form of the velocity distribution outside the boundary layer
is of no importance whatsoever in determining the behavior inside the

boundary layer and (b) that a veloclity U calculated from p %?; + p = Constant
exists at the edge of the boundary layer, certain simplifled equations mey

be written which allow the approximate analysis of the veloclty distribution
within the boundary layer.

Since the two postulates mentioned are not exactly true, the
momentum equations are only approximations. Ilixpewimental results indicate
that the approximation is fairly good. The morientwm equation ror steady
flow (see appendix A) is

5 5 - .
-3 2 _u 9 _ . %9Jdp . /ou
5 L u? oy U&L oy =g @ov(sy), G



NACA TN No. 1453 51

It should be particularly noted thet Iintegrations extend only to & instead
of = as was the case for the boundary-layer equations., Thus the boundary—
layer thickness is of primery importance in the momentum equations, although
its definitlon was really not essential 1n the analytical solution of the

boundary—layer equations.

The momentum equations are solved by expressing the velocity ratio I—‘;-"
as a function of % A typlcal expression for IPJ-’ (a2ppendix A) is

A ORGRECRLON

Since only the reglon between % =0 and -5 l is being considered,

the following approximate boundary conditions may be imposed on IE.T

ou _ - u ¥y )

-5_-_0 at% 1 = at £=0

-a-%—;=o at L =1 M o rinite at L =0
| > (137)

-a-.-3—u-=0 at X:l é—%%:.ri at Z=o

EL at L =0

By3 ’ & J

(See reference 7, vol. I, p. 156). These boundary conditions, which are
not exactly true in the physical system, allow, however, the evaluation
of the constants a, b, ¢, d, and so forl:h Obviously the veloclty d.is—

tribution is only applicable between % =0 and % = 1. Outside L= 1
there is no relation between the polynomlial expressing % and the

experimental velocity distribution.

Having % as a function of %, the mamentum equation may be solved

for the shear at the wall, the boundary-—layer thickness 5, and the
displacement thlckmess 8;. In addition, for puzposes of a.na.lysis the

momentum thickness defined by

8
oU° = f (U - wu dy (138)
0

is often calculated by the mamentum equation method. e
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The adventages of the momentum method are the relatlve simplicity of
accounting for variable pressure gradlents as a function of x and the -
fact that it may be appllied approximately to both laminar and turbulent

boundary layers.
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APPENDIX C
SOME REMARKS ON THE SIMILARITY OF VELOCITY AND TEMFERATURE
DISTRIBUTIONS IN THE PRESENCE OF A PHEESSURE GRADIENT

As wes discussed in the section of the text LAMINAR REGIME, Method
of Squire, inspection of the boundary—layer equations, for both laminar
and turbulent boundexry layers, reveals that within the boundary layer the
pressure gradlent will probebly cause only secondsry differences in the
temperature distribution as compared with the velocity distribution.

This conclusion is even more important for the region outside the boundary
layer. As shown in figure 7 and as dlscussed in appendix B, the solution
of the boundary--layer equations, even in the presence of a préssure '
gradient, ylelds valves of U and T which asymptotically approach
certain magnitudes of U and T which are supposed to exist far from
the solld—fluld interface.

Physically, however, in the presence of & pressure gradient the
actual veloclty outside of the boundary layer does not approach the velocity
U asymptotically, but (in a reglon of negative pressure gradient) reaches
a maximm and then decreases to a magnitude of the free—stream velocity u.
The temperature distribution, however, (nsglec'bing frictional heating)
approaches T, asymptotically.

It is apparent therefore that, at least outside the boundary layer, |
the pressure gradient affects the velocity distribution much more than
1t affects the temperature distribution.
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TABIE T
CAICULATIONS FOR LAMINAR BOUNDARY LAYER FOR JOUKOWSKI ATRFOIL
[c = 7.78 £%, u, = 253 ft/sec, 7 == 0.078 1b/rt3,

Cp = 0.24 Bt/ (1) (°F), Pr = 0.72, @ = 1.59)

U 0.332 -1/e Al -3 (% 2
x/c T Rex [A] [B] Pr
- | VR W | @ =%
0.06 1.270 T6.4 % 10lL 3.80 x 10'lL 1.197 1.059 1| 1.24%2 1.22
.10 1.276 131.5 - 2.8 . 1.121 1.050 1i2k2 1.2k
.16 1.276 209 2.22 1.070 1.012 | 1.242 1.2
.20 1.272 263 1.99 1.042 1.0l2 ‘| 1L.2k2 l.24
.28 1.26k4 366 1.68 1.003 .997 1.2k 1.25
.36 1.251 466 1.49 .968 .980 | 1.242 1.26
Lk 1.229 559 1.37 L1910 .959 T 1l.242 1.28
.52 1.218 655 1.26 .85 .932 -| l.242 1.30
.60 1.198 Thdr 1.18 .8L45 895 | 1.24k2 1.32
T2 1.162 860 1.1 .TTC L8 | d.oh2 1.36
fcx ag determined by - -
Allen end ILook Frick and Martinellii Squire
x/c (equatipn (23)) McCullough ‘and others (equation (39))
(3) (equation. (28)) (equation (33))
0.06 2.8 12.2 10.2 i0.6 :
.10 6.8 8.50 7.59 _ 7.95
.16 5.16 6.42 5.98 6.05
.20 4,51 5.60 5.38 5.4
.28 3.65 .54 4,51 h.si
.36 3.08 3.83 3.9k 3.96
R 2.60 . 3.24 3.57 - 3.51
.52 2.35 2.94 3.27 3.18
.60 2.04 2.53 3.00 - 2.86
T2 1.74 2.16 2.82 2.61

IRINCSLE
|00

3 Calculations based on Pr value of 1.



TARLE IT

CALCULATICNS FOR TURBULENT ROURDARY IAYER FOR RACA 65,2-016 ATRFOIL

[g caloilated In refersnce 11; Uﬁ'(g " 1)9 spmroximately caloulated by wtilizing g - 1.29]

gG%1T 'ON NI VOVN

0.2
U 0.0296 Bey ut/s ;- A -2/3
x/a - — ={ 2+ 1)8 Pr
/ u‘n EI ]bx().a 0-&%‘; U (G * (1)
0.0L 1.6 1.0 x 10* 0.00277 1.092 2.2 x 10-} 1.17 1.4
.03 1.5k ko.o .0022% 866 -3.Th 1.13 1.24
-03 1.50 65.2 . 00204 .80 -3.5k 1.1p 1.2h4
.09 1.4y 11.3 . 00182, 901 -2.94 1.1z 1.24
a1 1l.k2 13.6. .001Th 038 -1.81 1.12 1.2k
.8 1.38 25.2 00155 .gL8 =171 1.11 1.24
31 1.35 36.5 00144 963 -1.09 1.1 1.2k
4L L.35 k7.9 .00136 .98 -2.76 1.11 1.24
-51 1.32 58,4 .0013L .9680 1.11 1.2k
fo, 28 dotommined by -
x/e mﬁ Frick and ];‘:lck and qu_}re 8 q’ﬁm
I II
(squation (71)) (equation (70)) (ematica (73)) (equation (75)) (equation (&1))
0.01 78.1 68.5 8.l 804 73.4
.03 60.5 4ok 52.6 48,4 Eg.s
.05 53.3 38.5 47.8 43.6 .0
09 ks, 3.2 h1.3 37.7 39.2
W11 k3.6 3a.k ho.0 36.4 36.0
.21 37.6 28.8 35.6 32.3 32.2
.al 34.3 26.7 33% 9.9 26.8
4 32.2 5.4 31, 28.4 30.8
ol Q.7 3.5 2.1 2.3
1 L .‘1@"
A m

1+?{¢Pr-1)+lug° [l+gf1’1'-1)]]’

€9
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Boundary layer

L4

radius of curvature = r = 1 /k

Figure 1.- Typical boundary layer. .
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Figure 2,- Joukowski profile used in comparison of methods for
laminar regime,

t/a = (cos 8 + 0.04) |1+ 0.83 T
(cos 8 + 0.04)2 + (sine + 0.05)2|

n/a = (sin 6 + 0.05) |1 - 0.83
(cose + 0.04)2 + (sin 6 + 0.05)2
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Point unit thermal conductance, fc_, Btu/(hr)(sq £t)(°F)
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Figure 3.- Comparison of methods for calculating point unit thermal
conductance in laminar regime for an airfoil section (Joukowski profile).
True airspeed, 253 feet per second; air temperature, 30° F; wing
temperature, 70° F; angle of attack, 1.5°; wing chord, 7.78 feet.
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Point unit thermal conductance, fo_, Btu/(hr)(sq ft)(°F)

NACA TN No. 1453
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Figure 4.- Comparison of methods for calculating point unit thermal
conductance in turbulent regime for airfoil section (NACA 65,2-018).
True sirspeed, 208 feet per second; air temperature, 30° F;
wing témperature, 70° F; lift coefficient, 0.55; wing chord, 7.0 feet.
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Section C

r = 0.412 R, Chord = 0.164 R, C = 1.172

Section D

r = 0.602 R, Chord = 0.602 R, Cy = 1.141

/S’e;ion E . x

r = 0.75 R, Chord = 0.137 R, Cp = 1.061

— SectionF " N\

r = 0.88 R, Chord = 0.137 R, C; = 0.961

.
E F

Figure 6.- Diagram of propeller section used in illustrative
example. Angle of attack, 6°.
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Actual velocity
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i I e e e Velocity predicted

I by boundary-layer
theory .

~—— = ——-— Actual temperature

.

Figure 7.- Velocity and temperature distributions in presence of
pressure gradient.
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Figure 8.- Velocity profile at any x.
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Diagram of velocity distribution near stagnation
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point of cylinder obtained from s_olution of boundary-layer

equation.
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Figure 10.- Flow pattern about actual physical system. _



